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An electronic structure calculation is presented which is based on a multidomain decomposition of the
coordinate space. Using the Green’s operator the electron density is calculated without calculating the Kohn-
Sham single-particle states, thus avoiding matrix diagonalizations. The method is simple to implement and
easy to parallelize. The approach is tested on nanosystems containing over 10 000 atoms using a single
processor.
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I. INTRODUCTION

The success of density-functional theory �DFT� in the ac-
curate description of material properties motivates the devel-
opment of new computational approaches to extend the
range of applicability of DFT calculations to large systems
such as biomolecules, quantum dots, or nanoscale electronic
devices. It has long been realized that the traditional DFT
calculation with full diagonalization is too expensive for
large problems and new approaches have been sought.1–18

Some of these attempts avoided the diagonalization com-
pletely while some others replaced it with iterative diagonal-
ization. Examples of the former are the divide and conquer
methods,19,20 orbital minimization,21 density-matrix
minimization,6,22 and the Fermi operator expansion.23 For a
review see Ref. 24. Various types of iterative approaches
such as the multigrid method,25–27 the preconditioned David-
son method,28 or the subspace iteration technique29,30 have
also been tested in DFT calculations.

Another family of large-scale DFT calculations is based
on the relation of the electron density and the one-electron
Green’s function.31,32 In this approach one has to calculate
the Green’s function of the system and the electron density is
given by the complex contour integral enclosing the occu-
pied states of the Green’s function. This method completely
avoids the Kohn-Sham orbitals and the diagonalization
bottleneck but for its application one needs �1� the location
of the occupied states in the energy axis and �2� an efficient
method to calculate the Green’s function.

In this paper we show that the combination of the multi-
domain decomposition and the Green’s-function method pro-
vides an efficient approach to large-scale electronic structure
calculations. In the multidomain decomposition method33

one divides the system into smaller overlapping or nonover-
lapping subdomains. The Kohn-Sham equations can be
solved separately in each subdomain. Using the subdomain
eigenfunctions as basis states one obtains a special structured
sparse block-matrix representation of the Hamiltonian. The
lowest and highest occupied states’ position can then be de-
termined by an LDL decomposition and the Green’s function
at the contour integration points can be efficiently calculated
by using the structured sparsity of the Hamiltonian.

We present a method that not only calculates the eigenen-
ergies for a system but also applicable to the full self-
consistent calculation, that is, it also calculates the electron
density. This approach is as rigorous as the Kohn-Sham
orbital-based approaches. As the overlapping subdomains

connect the wave function everywhere neither the wave
function nor the density have to be patched. The calculated
density is the same as one would get from solving the large-
scale eigenvalue problem associated with a given system but
with a fraction of the computational cost. We have imple-
mented and tested this approach on various systems.

Although the main advantage of the presented approach is
that using the LDL decomposition the density can be directly
calculated from the Green’s function without calculating the
Kohn-Sham states with diagonalization, the LDL decompo-
sition can also be used as a powerful method to determine
the Kohn-Sham eigenstates if needed. To calculate the occu-
pied eigenstates one can divide the eigenvalue spectrum of
the Kohn-Sham Hamiltonian into energy windows and cal-
culate the eigensolution in each window by subspace itera-
tion. The division of the spectrum of the Hamiltonian H into
energy windows is achieved by LDL decomposing EO−H
�where O is the overlap matrix�. In the LDL decomposed
form of EO−H=LDLT the number of negative elements of
the diagonal matrix D is equal to the number of eigenvalues
of H below E. By counting the number of eigenvalues for a
suitable preselected set of energies E=�1 ,�2 , . . . ,�k energy
windows ��i ,�i+1� are set up in the energy region of interest.
The calculation of the eigenstates in different windows is
completely independent of each other. This allows efficient
parallel calculation of a large number of eigenstates.

The outline of this paper is as follows. In Sec. II, we
describe the formalism giving details about the domain de-
composition, basis functions, and alternative ways of calcu-
lation of the electron density. Numerical examples are pre-
sented in Sec. III followed by a summary in Sec. IV. Some of
the details of the algorithms used in the paper are described
in the appendices.

II. FORMALISM

Our primary interest in this paper will be to study elec-
tronic and transport properties of nanoelectronic devices
which in general have a linear structure as shown in Fig. 1.
The extension of the calculations to different systems will be
discussed in the last section. We will divide the computa-
tional region into Nx boxes in the x direction as shown in Fig.
1. In the calculations we will use overlapping boxes, and
each box overlaps with its nearest neighbor. Numerical test
calculations, however, show that calculations with overlap-
ping regions are computationally more efficient. Each do-
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main can be solved separately. Using the subdomain eigen-
functions as basis states one obtains a special structured
sparse block-matrix representation of the Hamiltonian.

The DFT Hamiltonian is defined as

HKS =
− �2

2m
� + VA�r� + VH����r� + Vxc����r� , �1�

where VA is the Coulomb potential of the atomic nuclei, VH
is the Hartree potential, and Vxc is the exchange-correlation
potential. The electron density is defined as

��r� = 2�
k

��k�r��2���F − �k� , �2�

where �F is the Fermi energy, and �k and �k are the eigenso-
lution of the DFT Hamiltonian,

HKS�k = �k�k �3�

and � is a step function. To calculate the density in this way
one has to diagonalize the Hamiltonian.

Another way to calculate the electron density is to use the
one-electron Green’s function, the resolvent of the Kohn-
Sham Hamiltonian, HKS,

G�r,r�,E� = �r��E − HKS�−1�r�� . �4�

The electron density is then calculated from the diagonal
elements of the Green’s function,

��r� = −
1

�
	

C

Im
G�r,r,E��dE , �5�

where C is a contour in the complex plane enclosing the
occupied states’ eigenvalues.

In the following we will show that the domain decompo-
sition approach provides a representation that can be effi-
ciently used to calculate both the Green’s functions and the
single-particle eigensolutions.

A. Domain decomposition

Each box is described by a basis function set 	 j
i, where i

is the box index and j is the index of the basis function in
box i. The box basis functions are allowed to overlap with
those in the neighboring boxes but only with the nearest
neighbors. The construction of these basis functions will be
discussed in the next section. The Hamiltonian and overlap
matrices in the ith box are defined as

�HBi�kj = �	k
i �H�	 j

i� �OBi�kj = �	k
i �	 j

i� �6�

while those in the connecting neighboring boxes are

�HAi�kj = �	k
i �H�	 j

i−1� �OAi�kj = �	k
i �	 j

i−1� . �7�

The Hamiltonian of the system will now be a sparse block-
tridiagonal structured matrix,

H =�
HB1 HA2

T 0 0 . . .

HA2 HB2 HA3
T 0 . . .

HAN
T

0 . . . HAN HBN

 , �8�

O =�
OB1 OA2

T 0 0 . . .

OA2 OB2 OA3
T 0 . . .

OAN
T

0 . . . OAN OBN

 , �9�

where HBi�OAi� and HAi�OAi� are ni
ni matrices. Once the
block-tridiagonal matrices have been generated we perform
an LDL decomposition �see Appendix A for details� to have

EO − H = LDLT =�
D1 L1

T 0 0 . . .

L1 D2 L2
T 0 . . .

LN−1
T

0 . . . LN−1 DN

 , �10�

where Li are a lower diagonal and D are diagonal matrices.
Note that the LDL decomposition of a block-tridiagonal ma-
trix preserves the block-tridiagonal form. The LDL factoriza-
tion can be generated by a recursive procedure as described
in Appendix A. The advantage of the LDL decomposition is
that the inverse of the whole matrix can be easily calculated
by forward and backward substitutions.34

Another advantageous property of the LDL decomposi-
tion is that the number of negative elements of the diagonal
matrix D is equal to the number of eigenvalues of H below
E. This property can be used to determine the number of
eigenvalues in a given region or to calculate the Fermi en-
ergy.

B. Box basis functions

The computational cell is divided into Nx intervals

�ai,bi� �i = 1, . . . ,Nx� , �11�

where ai+1�bi but ai�ai+1, that is, there is an overlap be-
tween the neighboring boxes but there is no overlap with the
second neighbors �Fig. 2�.

The DFT calculation was implemented on the Lagrange
function basis.35 The jth basis function in the ith box is ex-

FIG. 1. �Color online� Multidomain decomposition of a carbon
nanotube transistor.

FIG. 2. Intervals in the x direction.
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panded in terms of a tensorial product of Lagrange basis
functions as

	 j
i�r� = �

l=1

Mx

�
m=1

My

�
n=1

Mz

Cj,lmn
i Ll

i�x�Lm�y�Ln�z� . �12�

In the x direction, the Lagrange functions are defined on grid
points ai�xk

i �bi as

Ln
i �x� = �n�x��w�x� �n�x� = �

k=1

k�n

Mx x − xk
i

xn
i − xk

i , �13�

where w�x� is the weight function and the index i indicates
that the Lagrange function is defined in the ith box. We use
the same Lagrange basis Lm�y� and Ln�z� in the y and z
directions in each box. Other basis functions, e.g., atomic
orbitals, Gaussians, or finite differences can be used as well.

There are M =Mx
My 
Mz Lagrange basis functions in
each box. The box basis functions 	 j

k are generated by solv-
ing the eigenvalue problem,

HAkCj
k = EjOAkCj

k �14�

for Cj
k of Eq. �12� and keeping the lowest nk eigenstates

�below a preset cutoff energy�.

C. Direct diagonalization

Many powerful eigenvalue problem solvers have been de-
veloped including conjugate gradient, Lanczos, Jacobi-
Davidson, Krylov, and other subspace iteration methods.36–45

In this work we need an eigensolver that exploits the block-
tridiagonal structure of the Hamiltonian and overlap matrices
and is able to calculate tens of thousands of eigensolutions in
a numerically stable way.

In this section we show how subspace iteration can be
used to find the eigensolutions. Subspace iteration is a block
analog of the inverse �power� method.34 The inverse iteration
projects out the eigenstate from a random vector by repeated
application of �ErefO−H�−1, where Eref is a reference energy
close to a sought eigenvalue E. The inverse iteration con-
verges rapidly but it is numerically unstable and inefficient.
The subspace iteration projects out the eigenstates from a
collection of initial states, from a “subspace,” applying the
�ErefO−H�−1 operator. The subspace iteration is numerically
stable and one of the simplest approaches among the avail-
able methods. The main reason for its application in this
work is that it exploits the block tridiagonality of the matri-
ces. Once the LDL decomposition of ErefO−H is available
the inverse matrix �ErefO−H�−1 can be easily calculated by
forward and backward substitutions34 and the inverse matrix
needed in the subspace iteration is readily available.

To solve the eigenvalue problem

HX = EOX �15�

we first transform it into an equivalent form

�H − �O�X = OX �E =  + �I� , �16�

where E and  are diagonal matrices of eigenvalues, � is an
energy shift, and X is the matrix of eigenvectors. The sub-

space iteration calculates the eigensolutions around the shift
value, �. To obtain m converged eigensolutions around �
requires a subspace dimension m� only slightly larger than
m. In practical calculations the dimension of the subspace
has to be kept low because an explicit diagonalization is
required in the m�-dimensional subspace. The purpose of the
shift � is to sweep through the energy spectrum of the
Hamiltonian with appropriate energy shifts and calculate all
occupied eigenstates.

To calculate the desired eigenstates, first the energy spec-
trum of the Hamiltonian is divided into energy windows
��i ,�i+1� �see Fig. 3�. This can be done by LDL decomposing
�EO−H� and counting the negative elements of the diagonal
matrix D which is equal to the number of eigenvalues of H
below E. We define �is in such a way that each window
contains approximately m eigenvalues. The knowledge of the
number of eigenvalues helps in book keeping so no eigen-
value is missed and no spurious eigenvalues are included in
the spectrum. The shift value is selected in the middle of the
energy window and the subspace iteration algorithm is used
to calculate the required number of eigenstates in each en-
ergy window.

A major advantage of this approach is that the calcula-
tions of the eigensolutions in different energy windows are
completely independent and can be calculated in parallel.
The detailed subspace iteration algorithm is given in Appen-
dix C.

D. Green’s function

By adopting Eq. �5� one can avoid the use of Kohn-Sham
orbitals completely. To use this equation to calculate the den-
sity one needs �1� the location of the occupied states on the
energy axis and �2� an efficient method to calculate the
Green’s function.

The electron density is given by the complex contour in-
tegral of the Green’s function �see Eq. �5��. To form the
contour C in the complex plane one needs to know the en-
ergy of the lowest occupied state �Emin� and the Fermi en-
ergy, the energy of the highest occupied state �Emax�. As al-
ready mentioned, with the LDL decomposition we get the
number of eigenvalues Ei�E and Emin and Emax can be de-
termined by bisectioning. The electron density is then calcu-

FIG. 3. Energy windows in the energy spectrum of the
Hamiltonian.
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lated by defining C as a semicircle connecting Emin−� and
Emax+� �where � is a suitably chosen small number�. The
semicircle is discretized in Nc complex energy points Ek
+ i�k by a Legendre quadrature34 and the density is calcu-
lated using

��r� = −
1

�
�
k=1

Nc

Im
G�r,r,Ek + i�k��dE . �17�

Note that the calculations at different energy points are inde-
pendent and can be done in parallel. This calculation is re-
peated until the self-consistent potential and density are
reached.

The Green’s function in Eq. �17� is represented by the
basis defined in Eq. �12�. Assuming that r is from box m and
r� is from box m�, the basis representation is given by

G�r,r�,E� = �
kk�

�
ij

Gij
kk�	i

k�r�	 j
k��r�� , �18�

where Gkl is a block matrix in the Green’s-function matrix
defined by

G�E� = �EO − H�−1

��
G11 G12T

G13T
G1NT

G12 G22 G23T

GN−1NT

G1N . . . GN−1N GNN
 . �19�

The summation over k and k� is restricted to k=m, m�1 and
k�=m�, m��1 because the basis functions are only connect
the adjacent boxes. The calculation of the Green’s-function
matrix is presented in Appendix B.

III. NUMERICAL EXAMPLES AND DISCUSSION

We have tested the multidomain decomposition approach
on several examples to check the accuracy and applicability
of the method. These test calculations are presented in this
section.

A �20,0� carbon nanotube �CN� is used in the first set of
examples. A unit cell of this CN, which will be a “box” in
our calculation, contains 80 atoms. First we test the conver-
gence of the calculations as a function of the number of basis
states ni used in a given computational box. The convergence
of the total energy per atom is shown in Fig. 4. This example
shows that one does not need all the M basis function in a
given box and the basis size can be truncated by specifying
an acceptable level of accuracy.

The next question we investigated is the dependence of
the accuracy on the number of integration points Nc in Eq.
�17�. To test this we calculated the band gap of a �20,0� CN
containing 25 unit cells as a function of the number of inte-
gration points �see Fig. 5�. The number of basis function in
each box is ni=600. The band gap of this nanotube, calcu-
lated by diagonalizing the Hamiltonian on the full basis is
Eg=0.48 eV. The value of the band-gap energy calculated
by the present Green’s-function approach converges to this
value as it is shown in Fig. 5. A relatively few �Nc
=50–60� integration points provide good accuracy.

The number of integration points required for a preset
accuracy only moderately increases by increasing the size of
the system. This is tested by fixing the number of integration
points and increasing the size of the system. The same test
system, a �20,0� CN is used in these calculations. Figure 6
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FIG. 4. Convergence of the energy per atom as a function of
number of basis functions per box. The energy is relative to the
“exact” energy. The exact energy is defined as the energy obtained
when the full basis �M =2000� is used without truncation.
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FIG. 5. Band gap as a function of number of integration points,
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FIG. 6. Number of excess electrons �in units of 10−6� as a func-
tion of system size for Nc=50.
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shows the error in the number of electrons �e due to the
numerical integration. This quantity is defined as

�e = �Ne� − Ne

Ne
� , �20�

where Ne is the number of electrons in the simulation cell
�equal to the sum of ionic core charges� and

Ne� =� ��r�dr �21�

is the number of electrons obtained by integrating the charge
density calculated using Eq. �17�. As Fig. 6 shows, the error
in the number of electrons increases with the increasing sys-
tem size but the error is small. For the largest calculated
system which contains 100 boxes, 8000 atoms, and Ne
=16 000; Ne�−Ne=0.1, which is a very small error consider-
ing the size of the system. This error can be decreased by
increasing the number of integration points, Nc.

In the next example we show the computational time for a
multiwall carbon nanotube �MWCN�. The MWCN consists
of three concentric nanotubes of chirality �5,5�, �10,10�, and
�20,20�. Each box contains a unit cell �20+40+80
=140 atoms�. The scaling of the computational time as a
function of number of boxes is shown in Fig. 7. The basis
dimension is ni=1000 in each box and Nc=50 used in the
calculations. The largest system contains 16 800 atoms and
Nbox
M =120 000 basis functions.

To test the applicability of the subspace iteration approach
described in Sec. II C, the lowest 33 600 eigenstates are cal-
culated for the Nbox=120 and 16 800 atom MWCN. Each
energy window �see Fig. 3� contained about m=500 eigen-
states. The accurate calculation for such a big number of
eigenstates would be very difficult �if possible at all� with
any other approach. The density of states �DOS� calculated
using the eigenvalues is shown in Fig. 8. The DOS can also
be calculated using the Green’s-function approach and the
two calculations are in perfect agreement. The transmission
probability of the MWCN is also calculated �see Fig. 8� us-
ing the approach described in Refs. 46 and 47. The steplike
structure in Fig. 8 arises from the superposition of the step-
like conductance behavior of the individual �5,5�, �10,10�,
and �20,20� CNs. The appearance of the steps is in correla-
tion with the peaks in the DOS, as expected.

Next we investigate the conductance properties of a 1.5-
nm-thick and 120-nm-long doped Si nanowire. The system
contains about 8400 atoms divided into 120 boxes. Four bo-
ron impurities, separated by about 20 nm, have been placed
randomly into the nanowire. The transmission spectra of the
pristine and doped nanowire are shown in Fig. 9. The pristine
nanowire has a steplike conductance spectrum; the transmis-
sion is an integer multiple of G0=2e2 /h. The conductance is
zero in the band gap. The boron doping reduces the conduc-
tance and due to electron scattering on the impurities the
conductance is no longer an integer multiple of G0.

IV. SUMMARY

We have presented a multidomain decomposition ap-
proach for electronic structure calculations. In the present
work we have considered quasilinear systems whose dimen-
sions are much larger in one dimension than in the other two.
In these systems domain decomposition leads to block-
tridiagonal Hamiltonian and overlap matrices. With the help
of an LDL decomposition the block-tridiagonal structure can
be exploited and the Kohn-Sham states and/or the electron
density can be calculated in an computationally efficient
way. The electron density can be calculated from the Green’s
function or from the eigensolution obtained using subspace
iteration. In both cases, the calculation of the density is di-
vided into a series of independent computations that can be
done in parallel. This approach allows us to determine tens
of thousands of eigenstates with any desired accuracy. If the
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FIG. 7. Computational time spent for a single self-consistent
cycle as a function of system size.
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FIG. 8. DOS per C atom and transmission spectrum of a multi-
wall carbon nanotube. The transmission is in units of G0=2e2 /h.
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FIG. 9. �Color online� Conductance of a pristine �upper line�
and a doped �lower line� Si nanowire. The transmission is in units
of G0=2e2 /h.
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Kohn-Sham states are not required, the density can be calcu-
lated from the Green’s function in a linearly scaling fashion.
The linear scaling is achieved by using the special structure
resulting from the domain decomposition and not by trunca-
tion or cutoff.

The numerical examples presented show the efficiency
and power of the approach. The presented approach opens a
way to simulate transport properties of realistic nanodevices
containing tens of thousands of atoms. The most powerful
implementation uses the linearly scaling Green’s-function
approach to calculate the density and use it in the self-
consistent iterations. If the Kohn-Sham states are needed
they can be calculated by subspace iteration. The present
work used a Lagrange function basis in each box but an
implementation using atomic orbitals or other localized basis
functions is straightforward. The presented examples show
calculations for systems with a band gap. The extension of
the work for metallic systems is under way.

The presented calculations are done using a single-
processor personal computer. The size of the systems is only
limited by the memory capacity of the computer. Implemen-
tation on advanced parallel computers would not only in-
crease the speed of the calculations by using the manifestly
parallel nature of the algorithms but would also allow the
calculations of much larger systems containing millions of
atoms.

While this work is concentrated on linear systems one can
use the same approach in three-dimensional cases as well. In
a three-dimensional case one divides the system into boxes
in all three dimensions. This decomposition will result in a
matrix with diagonal stripes of block matrices. Besides the
block-tridiagonal structure, other nonzero blocks appear con-
necting the neighboring layers. This matrix can be brought
into a block-tridiagonal form using various transformations.
One of the simplest such transformations can be obtained by
a block Lanczos recursion.48 Once the block-tridiagonal
structure has been constructed, the approach presented in this
paper can be used. Work in this direction is in progress.

APPENDIX A: BLOCK LDL FACTORIZATION OF A
BLOCK TRIDIAGONAL MATRIX

The LDL factorization of a matrix34 is a standard linear
algebraic operation used in solving eigenvalue problems and
linear equations. In this appendix an LDL decomposition of a
block-tridiagonal matrix is presented. The factorization is
very similar to the conventional LDL decomposition of a
matrix but in this case one has to operate with matrices
whose elements are themselves matrices and not scalars. An-
other special feature of the present problem is that a block-
tridiagonal matrix is factorized and the L matrix is also block
tridiagonal �in fact block bidiagonal� preserving the block-
tridiagonal sparse structure of the original problem.

A block-tridiagonal matrix

C =�
B1 A2

T 0 0 . . .

A2 B2 A3
T 0 . . .

AN
T

0 . . . AN BN

 �A1�

can be LDL factorized as

C = LDLT, �A2�

where L will be a block lower bidiagonal matrix

L =�
L1 0 0 0 . . .

K2 L2 0 0 . . .

0

0 . . . KN LN

 �A3�

and D is a diagonal matrix

D =�
D1 0 0 0 . . .

D2 0 0 . . .

0

0 . . . DN

 . �A4�

Li are lower diagonal block, Ki are a block matrix of L, and
Di are the diagonal block matrices of D. By multiplying the
matrices in Eq. �A2� and equating it to the matrix in Eq. �A1�
the following matrix equations are obtained:

Bi = KiDi−1Ki
T + LiDiLi

T �D0 = 0� , �A5�

Ai = KiDi−1Li−1
T . �A6�

One can LDL factorize C by solving these equations recur-
sively for i=1, . . . ,N,

�1� Mi = Bi − KiDi−1Ki
T, �A7�

�2� Mi = LiDiLi
T, �A8�

�3� Ki+1 = Ai+1�DiLi
T�−1. �A9�

The following notes are in order: step �1� is a straightforward
substitution to calculate Mi. In step �2� Li and Di are calcu-
lated by LDL decomposition of the matrix Mi. Mi is a sym-
metric indefinite matrix and it can be LDL factorized by
using the standard LDL decomposition approach with appro-
priate pivoting.34,49 In step �3� no explicit inversion is
needed; one can solve the equivalent set of linear equations,

�DiLi
T�Ki+1 = Ai+1 �A10�

for Ki−1 by backsubstitution exploiting the upper diagonal
structure of �DiLi

T�.

APPENDIX B: INVERSION OF AN LDLT MATRIX

In this appendix we present the calculation of the inverse
of an LDLT matrix. This step is used in the calculation of the
Green’s function. The Green’s-function matrix is defined as

�EO − H�G�E� = I . �B1�

The matrix C=EO−H is block tridiagonal and can be written
in the form of Eq. �A1�, thus we have
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�
B1 A2

T 0 0 . . .

A2 B2 A3
T 0 . . .

AN
T

0 . . . AN BN



�

G11 G12T
G13T

G1NT

G12 G22 G23T

GN−1NT

G1N . . . GN−1N GNN


=�
I1 0 0 0 . . .

0 I2 0 0 . . .

0

. .

0 . . . 0 IN

 , �B2�

where Gij are the block-matrix components of the Green’s
function and Ik are block unit matrices. Now by defining
block column matrices

gk =�
g1

k

g2
k

gk
k

gN−1
k

gN
k

 =�
G1kT

G2kT

Gkk

GN−1k

GNk

 �B3�

and

fk =�
f1

f2

fk

fN−1

fN

 =�
0

0

Ik

0

0

 �B4�

and using the LDLT factorization of C �Eqs. �A1� and �A2��
we have

LDLTgk = fk �k = 1, . . . ,N� . �B5�

This equation has to be solved for gk. By defining

hk = DLTgk, �B6�

Eq. �B5� can be written as

Lhk = fk. �B7�

To obtain gk first we have to solve the linear equation Eq.
�B7� for hk and then solve the linear equation Eq. �B6� for gk.
The matrix form of Eq. �B7� is

�
L1 0 0

K2 L2 0

0

0 . . . KN LN

�
h1

k

h2
k

hN−1
k

hN
k
 = �

f1
k

fN
k
 . �B8�

This equation can be solved by forward substitution34

h1
k = L1

−1f1
k , �B9�

hi
k = Li

−1�f i
k − Kihi−1

k � �i = 2, . . . ,N� . �B10�

In this procedure, only ni
ni block matrices have to be in-
verted. The above algorithm is valid for a general fk. The
special structure of fk �zero everywhere except the k row
where it is a unit matrix� simplifies the equation further,

hi
k = 0 �i = 1, . . . ,k − 1� , �B11�

hk
k = Lk

−1fk
k, �B12�

hi
k = Li

−1�f i
k − Kihi−1

k � �i = k + 1, . . . ,N� . �B13�

Now we can solve Eq. �B6�. As D is a diagonal matrix its
inverse is trivial and we can multiply both sides of Eq. �B6�
by D−1 to have

LTgk = D−1hk � ĥk �B14�

which in matrix form becomes

�
L1

T K2
T 0

L2
T 0

KN
T

0 . . . LN
T
�

g1
k

g2
k

gN−1
k

gN
k
 =� ĥ1

k

ĥN
k
 . �B15�

This equation can be solved by backward substitution34

gN
k = LN

T−1
ĥN

k ,

gi
k = Li

T−1
�ĥi

k − Ki+1
T gi+1

k � �i = N − 1,N − 2, . . . ,1� ,

and the calculation of the Green’s function is complete. Due
to the multidomain decomposition, in practice we only need
to calculate Gii and Gii−1 because only the neighboring boxes
are connected.

APPENDIX C: SUBSPACE ITERATION

The subspace iteration method uses the following algo-
rithm to solve the N
N eigenvalue problem Ax=�Bx:

�1� X0 = �x1, . . . ,xm� ,

�2� B − orthogonalize Xi �Xi�B�Xj� = �ij ,

�3� solve�A − �B�Yi = Xi for Yi,

�4� solve�Yi�A�Yi�V = �Yi�B�Yi�V ,
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�5� Xi+1 = VYi,

�6� goto�2� . �C1�

Notes: xi is an N-dimensional vector, Xi and Yi are N
M
matrices. In step �1� a starting vector is created. In step �3�
the linear equation should be solved for Yi. In the present
approach that is simple because of the block-tridiagonal
structure of A−�B. In step �4� an m-dimensional generalized
eigenvalue problem

�Yi�A�Yi�Vk = �k
�i��Yi�B�Yi�Vk �C2�

has to be solved and matrix V= �V1 , . . . ,Vm� and diagonal
matrix kk=�k

�i� are constructed. The �i eigenvalues approxi-

mate the desired eigenvalues of A. m is chosen to be an
appropriate low dimension so this diagonalizing step is fast.
The new Xi+1 vector, the approximate eigenvector of A, is
calculated using the eigenvectors in step �5�. The procedure
is repeated until the eigenvalues are converged, satisfying the
criterion

��k
�i+1� − �k

�i�

�k
�i+1� � � � �C3�

for a preset �.
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